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Introduction

Contexte énergétique et environnemental ,
Presentation du jeu de donnée (Seattle), Objectif et problematique du projet.
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Contexte , Objectif & Problématique

@ La ville de Seattle souhaite atteindre son objectif de
ville neutre en émission de carbone en 2050.

@ Des relevés minutieux ont été effectués par les agents
de la ville en 2016. Ces relevés sont colteux a obtenir !

@ J’interviens dans cette mission pour tenter de
prédire les émissions de CO2 et la consommation
totale d’énergie de batiments non destinés a
’habitation.

. La prédiction doit se baser sur les données
structurelles des batiments (taille et usage des batiments,
date de construction, situation géographique, etc.)

? Peut-on prédire la performance énergétique d’un
batiment non résidentiel a partir de ses caractéristiques
structurelles, et quel modele offre les meilleures
performances prédictives ?




Jeu de données

« Jeu de données issu du site officiel de la ville de Seattle.
* Notre jeu de données contient, au départ, 3376 batiments décrits par 46 variables sur 'année 2016.

Variables d’identification & Variables concernant la Variables sur I’énergie &
contexte structure du batiment émissions du batiment

Variables concernant la
qualité et la conformité
des données

Variables décrivant 'usage

Variables de localisation du batiment



Comprehension et preparation des données

Description des variables, nettoyages des données, traitements des valeurs
manqguantes, détection et gestion des valeurs aberrantes, Feature engineering.
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2 variables cibles (Targets)

L’objectif étant de prédire la consommation énergétique totale des béatiments ainsi que leurs
émissions de CO2. Les variables cibles retenus sont donc :

¢ N

SiteEnergyUse (kBtu), représentant TotalGHGEmissions, représentant
la consommation énergétique les émissions totales de gaz a effet
annuelle du batiment. de serre (CO2).

Suppression des autres colonnes énergétiques pour eviter tout Data Leakage



Définition du périmetre
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Nettoyage

Traitements des valeurs manquantes (Colonnes a + de 90% de valeurs manquantes on été supprimées, 2
batiments dont les valeurs sont manquantes pour les variables cibles ont été supprimées, Imputation etc.)

Suppression de colonnes non pertinentes (City, State, DataYear etc.) n’apportant aucune information utile a
I’analyse et la modélisation.

Choix éclairé entre les variables sémantiquement proches (ex : PrimaryPropertyType vs LargestPropertyUseType)
Evaluation de la qualité des données
Traitement des valeurs aberrantes (incohérence physique, valeur négative, etc.)

Traitement des outliers (un seuil basé sur le 99e percentile a été appliqué sur les variables cibles)

Toute suppression ou modification a été explicitement justifié dans le Notebook.
A ce stade, le jeu de données comprend 1614 batiments décrit par 21 variables



Création de variables

Création d’une variable binaire Création d’une variable BuildingAge
has_secondary_use indiquant si le indiquant I’age du batiment afin
batiment est mono-usage ou multi- d’analyser I'influence de I’'ancienneté

usage. des batiments.
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Analyse exploratoire des donnees

Analyse descriptive, Analyse des variables cibles, Analyse des corrélations,
Analyse par type de batiment.
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Distribution des variables cibles

Distribution log(SiteEnergyUse + 1) Distribution log(TotalGHGEmissions + 1)
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80 4
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60
60

Count
Count

204 20 A

14 15

SiteEnergyUse(kBtu) TotalGHGEmissions

Une transformation logarithmique a été appliquée lors de la phase de modélisation, afin de réduire I'impact
de l'asymétrie des variables cibles. En effet, une majorité de batiments présentent des niveaux de
consommation et d’émissions relativement faibles tandis qu’une minorité de batiments est tres énergivore.
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Surface totale ou Surface batiment + parking ?

log(SiteEnergyUse) vs log(Surface totale) /

SiteEnergyUse(kBtu)

TotalGHGEmissions

log(SiteEnergyUse) vs log(Surface batiment)

log(SiteEnergyUse) vs log(Surface parking)
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L’age du batiment est-il un facteur explicat

log(TotalGHGEmissions) vs Building Age

log(SiteEnergyUse) vs Building Age
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Count

Distribution de I'ENERGYSTARScore

ENERGYSTARScore
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La majorité des batiments de Seattle
présentent un score surpérieur a 50, suggérant
une performance énergétique globalement
meilleure que la médiane nationale.

Cette variable a éte utilisée uniquement pour
I’EDA.



LargestPropertyUselype

Distribution de log(SiteEnergyUse) par usage principal
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L’'usage principal du batiment influence la distribution de la consommation énergétique. Cependant,
la dispersion intra-usage reste importante. Nous tirons la méme conclusion pour I'analyse des

émissions de CO2.
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La diversité des usages au sein d’un méme batiment
est une caractéristique fréquente du parc étudie.

Répartition des batiments : mono-usage vs multi-usage

Mono-usage
Multi-usage
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La localisation du batiment est-il

?

un facteur explicat
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Répartition spatiale des batiments et consommation énergétique Répartition spatiale des batiments et émission de CO2
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Les représentations spatiales mettent en évidence une forte concentration des batiments dans
certaines zones, notamment au centre de la ville. Cependant pour une méme zone géographique,
on observe une grande variabilité des niveaux de consommation énergétique et d’émissions de CO2

19



: bl R H L

\w 3 A% M

18 |’ iy il§
o 1 e s

i

% . g l” @ "!' ifff [
% i
g '\

1 3

==z

B T v

Methodologie de modelisation

Choix des variables explicatives, encodages des variables catégorielles, transformation
des variables (log, normalisation), stratégie de validation croisée, métriques d’évaluation.
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8 variables explicatives

categorical features

numeric features = |

Diversité des variables (contexte, localisation, structure du batiment, usage du batiment).
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Encodage pour les
variables
catégorielles.
Normalisation des
variables numériques
lorsque le modele en
a besoin.

Une fonction générique
d’évaluation a été créée.
Elle repose sur une
stratégie de validation
croisée afin d’estimer
mes performances de
maniere plus robustes
qu’un simple découpage
train/test. "

Methodologie

preprocessor_ lr FolumnTransformer(
transformers SRRy

OneHotEncoder(handle_unknown:”igmc*e”
um” ;StandardScaler(), numeric_features),

< el
A NIT D

)

1r_pipeline = Pipeline(][
- or", preprocessor_lr),
LinearRegression()

)s

categorical_features),

1r_results_energy = evaluate model cv(1lr_pipeline, X, y_energy)

print("“Ré
print(1r_ results energy)

Ir results _ghg's evaluate model cv(lr pipeline, X, y_ghg)

print("R

prlnt(lr resdits ghg)
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Pipeline :
preprocessor +
appel du modele
(avec ou sans
réglages des
hyper-parameétres)




3 metriques d’évaluation

Coefficient de détermination

Mesure la proportion de variance
expliquée par le modele.

R2 =1 -> modele « parfait »
R2 = 0 -> modeéle n’explique rien

Mean Absolute Error

Mesure I'’erreur moyenne
absolue entre les valeurs
réelles et prédites.

En unité réelle.

23

Root Mean Squared Error

Mesure la racine de la
moyenne des erreurs au
carré.

Pénalise davantage les
Qgrosses erreurs.



F=,

Modélisation

Régression Linéaire Multivariée, Random Forest, Gradient Boosting, SVM
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modeles testés

el Ll Modéle Non-linéaire : Modeéle avancé : Modele alternatif testé:

Regresspn ITlrnealre Random Forest Gradient Boosting SVM
Multivariée

Pipeline([ svm_pipeline = Pipeline([
r preprocessor_gb), -
preprocessor), . , preprocessor_svm),
GradientBoostingRegressor( . SVR(

odel”, RandomForestRegressor( e . L
= ernel="rbf",

C=10,
epsilon=0.1

1r_pipeline = Pipeline([

n_estimators=3e0,
bhpreprocessontln)y = - learning_rate=0.05,

random_state=42,
n_jobs=-1

rR i
LinearRegression() max_depth=3,

random_state=42
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Comparaison des modeles

Résultats des performances, Optimisation du modele retenu
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Comparaison des résultats de performance

Energie :

CO2:

LinearRegression

RandomForest

S T S A Sy

( 'GradientBoosting‘;ﬁ,

- IS
PR

SVM

LinearRegression

RandomForest

ikGradientBoostin

iSRS

)

g/

SVM

R2_log_mean

0.545241
0.686387
0.708018
0.672454

R2_log_mean

0.388498
0.474291
0.507459
0.461780

R2_log_std

0.039186
0.036281
0.033466
0.021603

R2_log_std

0.032651
0.044017
0.042804
0.020747
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MAE real mean
7.817847e+06
2.671516e+06
2.611703e+06
3.017177e+06

MAE _real mean
137.420478
78.709983
76.663234
84.152476

RMSE_real_mean training_time_sec

6.560826e+07
5.968868e+06
5.902730e+06
6.827361e+06

RMSE _real mean
809.596554
183.673141
175.275049
191.297995

0.119999
5.948424
4.093410
1.000795

training_time_sec

0.143080
6.132335
3.994004
0.912006




Optimisation de Gradient Boosting

param_grid gb = {
"model__n_estimators”: [20@, 300, 500],
- ' ": [0.03, ©.05, 0.1],
(1, 2, 3],

grid gb £ GridSearchCV(
estimator=gb pipeline,
param_grid=param grid gb,
scoring="r2",
cV=CV,
n_jobs=-1,
verbose=2,
refit=True

grid gb.fit(X _train, y train_log)
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Reésultats apres optimisation

Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best CV R* (log): ©.7102370489427285
Best params: {'model__learning rate’': 0.1, 'model_max depth': 2, "model_min_samples leaf’': 3, 'model_n estimators’: 200, 'model__subsample’': 0.8}

=== Final Test Metrics (REAL scale) pour 1l'énergie ===
RZ log : ©.739 oo

R* réel : 0.587

RMSE réel: 6310232.29

MAE réel : 2671917.56

Fitting 5 folds for each of 108 candidates, totalling 540 fits
Best CV R* (log): ©.5141917086637996
Best params: {'model_learning rate': .05, "'model max_depth’: ‘model min_samples leaf': 3, 'model n_estimators’: 300, "model subsample’: 0.7}

=== Final Test Metrics (REAL scale) pour le C02 ===
RZ log : ©.539 Sagpes
R% réel : 0.428

RMSE réel: 155.83
MAE réel : 71.12

29



prédit (loglp)

Valeur predite vs Valeur rée
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Prédit (loglp)

ghg (échelle log)

4 5 6 7
Réel (loglp)

=
N
w4
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Discussion & Conclusion

Feature importance, Limite du projet,
Pistes d’amélioration et suggestions
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Feature Importance

Energie : CO2:

Importance par variable métier Importance par variable métier

Importance totale
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La problématique de ce projet était de déterminer s’il est possible de prédire la performance énergétique d’un
batiment non résidentiel a partir de ses caractéristiques structurelles, et d’identifier le modéle offrant les meilleures
performances prédictives.

Les résultats obtenus montrent qu’une telle prédiction est effectivement possible. Les variables structurelles et
fonctionnelles permettent d’expliquer environ 59 % de la variance de la consommation énergétique et 43 % de celle
des émissions de CO,, ce qui traduit une capacité prédictive significative malgré la complexité du phénomene étudié.

Parmi les modeéles testés, les approches non linéaires, et en particulier le Gradient Boosting, ont offert les meilleures
performances, confirmant I'existence de relations complexes entre les caractéristiques des batiments et leur performance
énergétique.

Toutefois, la prédiction des émissions de CO, s’est révélée plus difficile, suggérant que certains facteurs déterminants,
notamment liés au mix énergétique ou aux équipements techniques, ne sont pas entierement capturés par les données
structurelles disponibles.

Ainsi, ce travail démontre que les caractéristiques d’un batiment constituent une base pertinente pour anticiper sa

performance énergétique, tout en soulignant I'importance d’un enrichissement des données pour améliorer davantage
la précision des modeles.
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